Adomian decomposition method with orthogonal polynomials: Legendre polynomials
نویسندگان
چکیده
منابع مشابه
Adomian decomposition method with Chebyshev polynomials
In this paper an efficient modification of the Adomian decomposition method is presented by using Chebyshev polynomials. The proposed method can be applied to linear and non-linear models. The scheme is tested for some examples and the obtained results demonstrate reliability and efficiency of the proposed method. 2005 Elsevier Inc. All rights reserved.
متن کاملMüntz Systems and Orthogonal Müntz - Legendre Polynomials
The Müntz-Legendre polynomials arise by orthogonalizing the Müntz system {xxo, xx¡, ...} with respect to Lebesgue measure on [0, 1]. In this paper, differential and integral recurrence formulae for the Müntz-Legendre polynomials are obtained. Interlacing and lexicographical properties of their zeros are studied, and the smallest and largest zeros are universally estimated via the zeros of Lague...
متن کاملReduced Polynomials and Their Generation in Adomian Decomposition Methods
Adomian polynomials are constituted of reduced polynomials and derivatives of nonlinear operator. The reduced polynomials are independent of the form of the nonlinear operator. A recursive algorithm of the reduced polynomials is discovered and its symbolic implementation by the software Mathematica is given. As a result, a new and convenient algorithm for the Adomian polynomials is obtained.
متن کاملOn Polar Legendre Polynomials
We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2008.06.020